Перевод: со всех языков на английский

с английского на все языки

thin-film optics

  • 1 thin-film electroluminescent

    Optics: TFEL

    Универсальный русско-английский словарь > thin-film electroluminescent

  • 2 alternating current thin-film electroluminescent

    Optics: ACTFEL

    Универсальный русско-английский словарь > alternating current thin-film electroluminescent

  • 3 Absorbing Thin-Film Reflector

    Engineering: ATFR (В установках для лазерной резки. См. http://www.ophir-spiricon.com/co2-lasers-optics/mirrors/atfr/1)

    Универсальный русско-английский словарь > Absorbing Thin-Film Reflector

  • 4 оптика тонких пленок

    Русско-английский словарь по электронике > оптика тонких пленок

  • 5 оптика тонких пленок

    Русско-английский словарь по радиоэлектронике > оптика тонких пленок

  • 6 тонкоплёночная оптика

    Electronics: thin-film optics

    Универсальный русско-английский словарь > тонкоплёночная оптика

  • 7 Dickson, William Kennedy Laurie

    [br]
    b. August 1860 Brittany, France
    d. 28 September 1935 Twickenham, England
    [br]
    Scottish inventor and photographer.
    [br]
    Dickson was born in France of English and Scottish parents. As a young man of almost 19 years, he wrote in 1879 to Thomas Edison in America, asking for a job. Edison replied that he was not taking on new staff at that time, but Dickson, with his mother and sisters, decided to emigrate anyway. In 1883 he contacted Edison again, and was given a job at the Goerk Street laboratory of the Edison Electric Works in New York. He soon assumed a position of responsibility as Superintendent, working on the development of electric light and power systems, and also carried out most of the photography Edison required. In 1888 he moved to the Edison West Orange laboratory, becoming Head of the ore-milling department. When Edison, inspired by Muybridge's sequence photographs of humans and animals in motion, decided to develop a motion picture apparatus, he gave the task to Dickson, whose considerable skills in mechanics, photography and electrical work made him the obvious choice. The first experiments, in 1888, were on a cylinder machine like the phonograph, in which the sequence pictures were to be taken in a spiral. This soon proved to be impractical, and work was delayed for a time while Dickson developed a new ore-milling machine. Little progress with the movie project was made until George Eastman's introduction in July 1889 of celluloid roll film, which was thin, tough, transparent and very flexible. Dickson returned to his experiments in the spring of 1891 and soon had working models of a film camera and viewer, the latter being demonstrated at the West Orange laboratory on 20 May 1891. By the early summer of 1892 the project had advanced sufficiently for commercial exploitation to begin. The Kinetograph camera used perforated 35 mm film (essentially the same as that still in use in the late twentieth century), and the kinetoscope, a peep-show viewer, took fifty feet of film running in an endless loop. Full-scale manufacture of the viewers started in 1893, and they were demonstrated on a number of occasions during that year. On 14 April 1894 the first kinetoscope parlour, with ten viewers, was opened to the public in New York. By the end of that year, the kinetoscope was seen by the public all over America and in Europe. Dickson had created the first commercially successful cinematograph system. Dickson left Edison's employment on 2 April 1895, and for a time worked with Woodville Latham on the development of his Panoptikon projector, a projection version of the kinetoscope. In December 1895 he joined with Herman Casier, Henry N.Marvin and Elias Koopman to form the American Mutoscope Company. Casier had designed the Mutoscope, an animated-picture viewer in which the sequences of pictures were printed on cards fixed radially to a drum and were flipped past the eye as the drum rotated. Dickson designed the Biograph wide-film camera to produce the picture sequences, and also a projector to show the films directly onto a screen. The large-format images gave pictures of high quality for the period; the Biograph went on public show in America in September 1896, and subsequently throughout the world, operating until around 1905. In May 1897 Dickson returned to England and set up as a producer of Biograph films, recording, among other subjects, Queen Victoria's Diamond Jubilee celebrations in 1897, Pope Leo XIII in 1898, and scenes of the Boer War in 1899 and 1900. Many of the Biograph subjects were printed as reels for the Mutoscope to produce the "what the butler saw" machines which were a feature of fairgrounds and seaside arcades until modern times. Dickson's contact with the Biograph Company, and with it his involvement in cinematography, ceased in 1911.
    [br]
    Further Reading
    Gordon Hendricks, 1961, The Edison Motion Picture Myth.
    —1966, The Kinetoscope.
    —1964, The Beginnings of the Biograph.
    BC

    Biographical history of technology > Dickson, William Kennedy Laurie

  • 8 Land, Edwin Herbert

    [br]
    b. 7 May 1909 Bridgeport, Connecticut, USA
    d. 1 March 1991 Cambridge, Massachusetts, USA
    [br]
    American scientist and inventor of the Polaroid instant-picture process.
    [br]
    Edwin Land's career began when, as a Harvard undergraduate in the late 1920s, he became interested in the possibility of developing a polarizing filter in the form of a thin sheet, to replace the crystal and stacked-glass devices then in use, which were expensive, cumbersome and limited in size. He succeeded in creating a material in which minute anisotropic iodine crystals were oriented in line, producing an efficient polarizer that was patented in 1929. After presenting the result of his researches in a Physics Department colloquium at Harvard, he left to form a partnership with George Wheelwright to manufacture the new material, which was seen to have applications as diverse as anti-glare car headlights, sunglasses, and viewing filters for stereoscopic photographs and films. In 1937 he founded the Polaroid Corporation and developed the Vectograph process, in which self-polarized photographic images could be printed, giving a stereoscopic image when viewed through polarizing viewers. Land's most significant invention, the instant picture, was stimulated by his three-year-old daughter. As he took a snapshot of her, she asked why she could not see the picture at once. He began to research the possibility, and on 21 February 1947 he demonstrated a system of one-step photography at a meeting of the Optical Society of America. Using the principle of diffusion transfer of the image, it produced a photograph in one minute. The Polaroid Land camera was launched on 26 November 1948. The original sepia-coloured images were soon replaced by black and white and, in 1963, by Polacolor instant colour film. The original peel-apart "wet" process was superseded in 1972 with the introduction of the SX-70 camera with dry picture units which developed in the light. The instant colour movie system Polavision, introduced in 1978, was less successful and was one of his few commercial failures.
    Land died in March 1991, after a career in which he had been honoured by countless scien-tific and academic bodies and had received the Medal of Freedom, the highest civilian honour in America.
    [br]
    Principal Honours and Distinctions
    Medal of Freedom.
    BC

    Biographical history of technology > Land, Edwin Herbert

  • 9 Anschütz, Ottomar

    [br]
    b. 1846 Lissa, Prussia (now Leszno, Poland) d. 1907
    [br]
    German photographer, chronophotographer ana inventor.
    [br]
    The son of a commercial photographer, Anschütz entered the business in 1868 and developed an interest in the process of instantaneous photography. The process was very difficult with the contemporary wet-plate process, but with the introduction of the much faster dry plates in the late 1870s he was able to make progress. Anschütz designed a focal plane shutter capable of operating at speeds up to 1/1000 of a second in 1883, and patented his design in 1888. it involved a vertically moving fabric roller-blind that worked at a fixed tension but had a slit the width of which could be adjusted to alter the exposure time. This design was adopted by C.P.Goerz, who from 1890 manufactures a number of cameras that incorporated it.
    Anschütz's action pictures of flying birds and animals attracted the attention of the Prussian authorities, and in 1886 the Chamber of Deputies authorized financial support for him to continue his work, which had started at the Hanover Military Institute in October 1885. Inspired by the work of Eadweard Muybridge in America, Anschütz had set up rows of cameras whose focal-plane shutters were released in sequence by electromagnets, taking twenty-four pictures in about three-quarters of a second. He made a large number of studies of the actions of people, animals and birds, and at the Krupp artillery range at Meppen, near Essen, he recorded shells in flight. His pictures were reproduced, and favourably commented upon, in scientific and photographic journals.
    To bring the pictures to the public, in 1887 he created the Electro-Tachyscope. The sequence negatives were printed as 90 x 120 mm transparencies and fixed around the circumference of a large steel disc. This was rotated in front of a spirally wound Geissler tube, which produced a momentary brilliant flash of light when a high voltage from an induction coil was applied to it, triggered by contacts on the steel disc. The flash duration, about 1/1000 of a second, was so short that it "froze" each picture as it passed the tube. The pictures succeeded each other at intervals of about 1/30 of a second, and the observer saw an apparently continuously lit moving picture. The Electro-Tachyscope was shown publicly in Berlin at the Kulturministerium from 19 to 21 March 1887; subsequently Siemens \& Halske manufactured 100 machines, which were shown throughout Europe and America in the early 1890s. From 1891 his pictures were available for the home in the form of the Tachyscope viewer, which used the principle of the zoetrope: sequence photographs were printed on long strips of thin card, perforated with narrow slots between the pictures. Placed around the circumference of a shallow cylinder and rotated, the pictures could be seen in life-like movement when viewed through the slots.
    In November 1894 Anschütz displayed a projector using two picture discs with twelve images each, which through a form of Maltese cross movement were rotated intermittently and alternately while a rotating shutter allowed each picture to blend with the next so that no flicker occurred. The first public shows, given in Berlin, were on a screen 6×8 m (20×26 ft) in size. From 22 February 1895 they were shown regularly to audiences of 300 in a building on the Leipzigstrasse; they were the first projected motion pictures seen in Germany.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Anschütz, Ottomar

  • 10 Ding Huan (Ting Huan)

    [br]
    fl. c.100 AD China
    [br]
    Chinese inventor of various devices.
    [br]
    Ding Huan invented a form of suspension rediscovered by the French Renaissance mathematician Jerome Cardan, although a reference in the "Ode to beautiful women" (c.740) indicates that the device was probably in existence earlier (see vol. IV.2, p. 233 in the reference given below). Ding Huan also invented the zoetrope lamp (c.180), which had a thin canopy bearing vanes at the top that were caused to rotate by an ascending current of warm air from the lamp. The canopy bore images which, if the canopy were rotated fast enough, gave the impression of movement, as in early forerunners of the cinematograph. In the Xi Jing Za Ji (Miscellaneous Records of the Western Capital), it is recorded that Ding Huan devised an air-conditioning fan that consisted of a set of seven fans, each 10 ft (3 m) in diameter, connected so that they could be worked together by one person. The device could cool a hall so that "people would even begin to shiver".
    [br]
    Further Reading
    J.Needham, 1972–4, Science and Civilisation in China, Cambridge: Cambridge University Press, vols IV. 1, pp. 123, 125; IV. 2, pp. 150–1, 233, 236; V. 2, p. 133.
    LRD

    Biographical history of technology > Ding Huan (Ting Huan)

  • 11 Ives, Frederic Eugene

    [br]
    b. 17 February 1856 Litchfield, Connecticut, USA
    d. 27 May 1937 Philadelphia, Pennsylvania, USA
    [br]
    American printer who pioneered the development of photomechanical and colour photographic processes.
    [br]
    Ives trained as a printer in Ithaca, New York, and became official photographer at Cornell University at the age of 18. His research into photomechanical processes led in 1886 to methods of making halftone reproduction of photographs using crossline screens. In 1881 he was the first to make a three-colour print from relief halftone blocks. He made significant contributions to the early development of colour photography, and from 1888 he published and marketed a number of systems for the production of additive colour photographs. He designed a beam-splitting camera in which a single lens exposed three negatives through red, green and blue filters. Black and white transparencies from these negatives were viewed in a device fitted with internal reflectors and filters, which combined the three colour separations into one full-colour image. This device was marketed in 1895 under the name Kromskop; sets of Kromograms were available commercially, and special cameras, or adaptors for conventional cameras, were available for photographers who wished to take their own colour pictures. A Lantern Kromskop was available for the projection of Kromskop pictures. Ives's system enjoyed a few years of commercial success before simpler methods of making colour photographs rendered it obsolete. Ives continued research into colour photography; his later achievements included the design, in 1915, of the Hicro process, in which a simple camera produced sets of separation negatives that could be printed as dyed transparencies in complementary colours and assembled in register on paper to produce colour prints. Later, in 1932, he introduced Polychrome, a simpler, two-colour process in which a bipack of two thin negative plates or films could be exposed in conventional cameras. Ives's interest extended into other fields, notably stereoscopy. He developed a successful parallax stereogram process in 1903, in which a three-dimensional image could be seen directly, without the use of viewing devices. In his lifetime he received many honours, and was a recipient of the Royal Photographic Society's Progress Medal in 1903 for his work in colour photography.
    [br]
    Further Reading
    B.Coe, 1978, Colour Photography: The First Hundred Years, London J.S.Friedman, 1944, History of Colour Photography, Boston. G.Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Ives, Frederic Eugene

  • 12 Muybridge, Eadweard

    [br]
    b. 9 April 1830 Kingston upon Thames, England
    d. 8 May 1904 Kingston upon Thames, England
    [br]
    English photographer and pioneer of sequence photography of movement.
    [br]
    He was born Edward Muggeridge, but later changed his name, taking the Saxon spelling of his first name and altering his surname, first to Muygridge and then to Muybridge. He emigrated to America in 1851, working in New York in bookbinding and selling as a commission agent for the London Printing and Publishing Company. Through contact with a New York daguerreotypist, Silas T.Selleck, he acquired an interest in photography that developed after his move to California in 1855. On a visit to England in 1860 he learned the wet-collodion process from a friend, Arthur Brown, and acquired the best photographic equipment available in London before returning to America. In 1867, under his trade pseudonym "Helios", he set out to record the scenery of the Far West with his mobile dark-room, christened "The Flying Studio".
    His reputation as a photographer of the first rank spread, and he was commissioned to record the survey visit of Major-General Henry W.Halleck to Alaska and also to record the territory through which the Central Pacific Railroad was being constructed. Perhaps because of this latter project, he was approached by the President of the Central Pacific, Leland Stanford, to attempt to photograph a horse trotting at speed. There was a long-standing controversy among racing men as to whether a trotting horse had all four hooves off the ground at any point; Stanford felt that it did, and hoped than an "instantaneous" photograph would settle the matter once and for all. In May 1872 Muybridge photographed the horse "Occident", but without any great success because the current wet-collodion process normally required many seconds, even in a good light, for a good result. In April 1873 he managed to produce some better negatives, in which a recognizable silhouette of the horse showed all four feet above the ground at the same time.
    Soon after, Muybridge left his young wife, Flora, in San Francisco to go with the army sent to put down the revolt of the Modoc Indians. While he was busy photographing the scenery and the combatants, his wife had an affair with a Major Harry Larkyns. On his return, finding his wife pregnant, he had several confrontations with Larkyns, which culminated in his shooting him dead. At his trial for murder, in February 1875, Muybridge was acquitted by the jury on the grounds of justifiable homicide; he left soon after on a long trip to South America.
    He again took up his photographic work when he returned to North America and Stanford asked him to take up the action-photography project once more. Using a new shutter design he had developed while on his trip south, and which would operate in as little as 1/1,000 of a second, he obtained more detailed pictures of "Occident" in July 1877. He then devised a new scheme, which Stanford sponsored at his farm at Palo Alto. A 50 ft (15 m) long shed was constructed, containing twelve cameras side by side, and a white background marked off with vertical, numbered lines was set up. Each camera was fitted with Muybridge's highspeed shutter, which was released by an electromagnetic catch. Thin threads stretched across the track were broken by the horse as it moved along, closing spring electrical contacts which released each shutter in turn. Thus, in about half a second, twelve photographs were obtained that showed all the phases of the movement.
    Although the pictures were still little more than silhouettes, they were very sharp, and sequences published in scientific and photographic journals throughout the world excited considerable attention. By replacing the threads with an electrical commutator device, which allowed the release of the shutters at precise intervals, Muybridge was able to take series of actions by other animals and humans. From 1880 he lectured in America and Europe, projecting his results in motion on the screen with his Zoopraxiscope projector. In August 1883 he received a grant of $40,000 from the University of Pennsylvania to carry on his work there. Using the vastly improved gelatine dry-plate process and new, improved multiple-camera apparatus, during 1884 and 1885 he produced over 100,000 photographs, of which 20,000 were reproduced in Animal Locomotion in 1887. The subjects were animals of all kinds, and human figures, mostly nude, in a wide range of activities. The quality of the photographs was extremely good, and the publication attracted considerable attention and praise.
    Muybridge returned to England in 1894; his last publications were Animals in Motion (1899) and The Human Figure in Motion (1901). His influence on the world of art was enormous, over-turning the conventional representations of action hitherto used by artists. His work in pioneering the use of sequence photography led to the science of chronophotography developed by Marey and others, and stimulated many inventors, notably Thomas Edison to work which led to the introduction of cinematography in the 1890s.
    [br]
    Bibliography
    1887, Animal Locomotion, Philadelphia.
    1893, Descriptive Zoopraxography, Pennsylvania. 1899, Animals in Motion, London.
    Further Reading
    1973, Eadweard Muybridge: The Stanford Years, Stanford.
    G.Hendricks, 1975, Muybridge: The Father of the Motion Picture, New York. R.Haas, 1976, Muybridge: Man in Motion, California.
    BC

    Biographical history of technology > Muybridge, Eadweard

См. также в других словарях:

  • Thin-film optics — Dichroic filters are created using thin film optics. A pattern …   Wikipedia

  • Thin film — A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. Electronic semiconductor devices and optical coatings are the main applications benefiting from thin film construction. A… …   Wikipedia

  • Thin-film deposition — is any technique for depositing a thin film of material onto a substrate or onto previously deposited layers. Thin is a relative term, but most deposition techniques allow layer thickness to be controlled within a few tens of nanometers, and some …   Wikipedia

  • Thin — may refer to:* Thin client, computer in client server architecture networks * Thin film, material layer of about 1 µm thickness * Thin film memory, high speed variation of core memory developed by Sperry Rand in a government funded research… …   Wikipedia

  • Sculptured thin film — Sculptured thin films (STFs) are nanostructured materials with unidirectionally varying properties that can be designed and realized in a controllable manner using variants of physical vapor deposition. The ability to virtually instantaneously… …   Wikipedia

  • Optics — For the book by Sir Isaac Newton, see Opticks. Optical redirects here. For the musical artist, see Optical (artist). Optics includes study of dispersion of light. Optics is the branch of …   Wikipedia

  • Index of optics articles — Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.[1] Optics usually describes the behavior of visible,… …   Wikipedia

  • Optical film — Optical films are several kinds of industrial and chemical thin film optics. They are mainly used for liquid crystal display panels. This video technology article is a stub. You can help Wikipedia by expanding it …   Wikipedia

  • optics — /op tiks/, n. (used with a sing. v.) the branch of physical science that deals with the properties and phenomena of both visible and invisible light and with vision. [1605 15; < ML optica < Gk optiká, n. use of neut. pl. of OPTIKÓS; see OPTIC,… …   Universalium

  • State Research Center for Optics and Material Sciences (OPTIMAS) — The State Research Center for Optics and Material Sciences (OPTIMAS) connects two areas of research for which the University of Kaiserslautern has a national and international reputation, founded upon relevant contributions to the development of… …   Wikipedia

  • Filter (optics) — Coloured and Neutral Density filters Optical filters are devices which selectively transmit light of different wavelengths, usually implemented as plane glass or plastic devices in the optical path which are either dyed in the mass or have… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»